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LineageOT is a package for analyzing lineage-traced single-cell sequencing time series. It extends Waddington-OT to
compute temporal couplings using measurements of both gene expression and lineage trees. The LineageOT couplings
can be used directly by the downstream analysis tools of the Waddington-OT package, which we do not duplicate here.
For full details, see our paper.

All of the functionality required for running LineageOT is in the core module. The remaining modules have imple-
mentation functions and code for reproducing analyses in the paper.

The source code, with installation instructions and examples, is available at https://github.com/aforr/LineageOT.
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CHAPTER
ONE

MODULES

1.1 Core pipeline

This module contains only the core functions required for applying LineageOT to new data. The fitted cou-
plings produced can be used directly by the downstream analysis tools of the Waddington-OT package. See
https://broadinstitute.github.io/wot/ for more details.

lineageot.core.fit_lineage_coupling (adata, time_I, time_2, lineage_tree_t2, time_key="time’,
state_key=None, epsilon=0.05, normalize_cost=True,
ot_method="sinkhorn', marginal_I=[], marginal_2=[],
balance_reg=inf’)
Fits a LineageOT coupling between the cells in adata at time_1 and time_2. In the process, annotates the lineage
tree with observed and estimated cell states.

Parameters
e adata (AnnData) — Annotated data matrix

* time_1 (Number) — The earlier time point in adata. All times are relative to the root of
the tree.

* time_2 (Number) — The later time point in adata. All times are relative to the root of the
tree.

* lineage_tree_t2 (Networkx DiGraph)— The lineage tree fitted to cells at time_2.
Nodes should already be annotated with times. Annotations related to cell state will be
added.

* time_key (str (default 'time')) — Key in adata.obs and lineage_tree_t2 con-
taining cells’ time labels

* state_key (str (default None)) — Key in adata.obsm containing cell states. If
None, uses adata.X.

* epsilon (float (default 0.05)) - Entropic regularization parameter for optimal
transport

* normalize_cost (bool (default True))— Whether to rescale the cost matrix by
its median before fitting a coupling. Normalizing this way allows us to choose a reasonable
default epsilon for data of any scale

* ot_method (str (default 'sinkhorn')) — Method used for the optimal
transport solver.  Choose from ‘sinkhorn’, ‘greenkhorn’, ‘sinkhorn_stabilized’ and
‘sinkhorn_epsilon_scaling’ for balanced transport and ‘sinkhorn’, ‘sinkhorn_stabilized’,
and ‘sinkhorn_reg_scaling’ for unbalanced transport. ‘sinkhorn’ is recommended unless
you encounter numerical problems. See PythonOT docs for more details.
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* marginal_1 (Vector (default []))—Marginaldistribution (relative growth rates)
for cells at time 1. If empty, assumed uniform.

* marginal_2 (Vector (default []))-—Marginaldistribution (relative growth rates)
for cells at time 2. If empty, assumed uniform.

* balance_reg (Number) — Regularization parameter for unbalanced transport. Smaller
values allow more flexibility in growth rates. If infinite, marginals are treated as hard con-
straints.

Returns coupling — AnnData containing the lineage coupling. Cells from time_1 are in cou-
pling.obs, cells from time_2 are in coupling.var, and the coupling matrix is coupling.X

Return type AnnData

lineageot.core.fit_tree (adata, time, barcodes_key="barcodes’, clones_key="X_clone’,
clone_times=None, method="neighbor join')
Fits a lineage tree to lineage barcodes of all cells in adata. To compute the lineage tree for a specific time point,
filter adata before calling fit_tree. The fitted tree is annotated with node times but not states.

Parameters
* adata (AnnData) — Annotated data matrix with lineage-traced cells

* time (Number) — Time of sampling of the cells of adata relative to most recent common
ancestor (for dynamic lineage tracing) or labeling time (for static lineage tracing).

* barcodes_key (str, default 'barcodes') — Key in adata.obsm containing
cell barcodes. Ignored if using clonal data. If using barcode data, each row of
adata.obsm[barcodes_key] should be a barcode where each entry corresponds to a possibly-
mutated site. A positive number indicates an observed mutation, zero indicates no mutation,
and -1 indicates the site was not observed.

* clones_key (str, default 'X_clone') - Key in adata.obsm containing clonal
data. Ignored if using barcodes directly. If using clonal data, adata.obsm[clones_key] should
be a num_cells x num_clones boolean matrix. Each entry is 1 if the corresponding cell
belongs to the corresponding clone and zero otherwise.

* clone_times (Vector of length num_clones, default None) — Ignored
unless method is ‘clones’. Each entry contains the time of labeling of the corresponding
column of adata.obsm[clones_key].

* method (st r) - Inference method used to fit tree. Current options are ‘neighbor join’ (for
barcodes from dynamic lineage tracing), ‘non-nested clones’ (for non-nested clones from
static lineage tracing), or ‘clones’ (for possibly-nested clones from static lineage tracing).

Returns tree — A fitted lineage tree. Each node is annotated with ‘time_to_parent’ and ‘time’ (which
indicates either the time of sampling (for observed cells) or the time of division (for unobserved
ancestors)). Edges are directed from parent to child and are annotated with ‘time’ equal to the
child node’s ‘time_to_parent’. Observed node indices correspond to their row in adata.

Return type Networkx DiGraph

lineageot.core.read_newick (filename, leaf labels, leaf time=None)
Loads a tree saved in Newick format and adds annotations required for LineageOT.

Parameters
e filename (str)— The name of the file to load from.

* leaf labels (1ist)- The label of each leaf in the Newick tree, sorted to align with the
gene expression AnnData object filtered to cells at the corresponding time.

4 Chapter 1. Modules
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* leaf time (float (default None))— The time of sampling of the leaves. If un-
specified, the root of the tree is assigned time 0.

Returns tree — The saved tree, in LineageOT’s format. Each node is annotated with
‘time_to_parent’” and ‘time’ (which indicates either the time of sampling (for observed cells)
or the time of division (for unobserved ancestors)). Edges are directed from parent to child and
are annotated with ‘time’ equal to the child node’s ‘time_to_parent’. Observed node indices
correspond to their index in leaf_labels, which should match their row in the gene expression
AnnData object filtered to cells at the corresponding time.

Return type Networkx DiGraph

lineageot.core.save_coupling_as_tmap (coupling, time_l, time_2, tmap_out)
Saves a LineageOT coupling for downstream analysis with Waddington-OT. A sequence of saved couplings can
be loaded in wot with wot .tmap.TransportMapModel. from_directory (tmap_out)

Parameters
* coupling (AnnData) — The coupling to save.

* time_1 (Number) — The earlier time point in adata. All times are relative to the root of
the tree.

* time_2 (Number) — The later time point in adata. All times are relative to the root of the
tree.

* tmap_out (str)— The path and prefix to the save file name.

1.2 Simulations

This module contains functions for generating the simulated data used in the LineageOT paper. Most of this is not
required for applying LineageOT to experimental data, and none of it needs to be used directly.

class lineageot.simulation.Cell (x, barcode, seed=None)
Bases: object

Wrapper for (rna expression, barcode) arrays
deepcopy ()

reset_seed()

1.2. Simulations 5
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class lineageot.simulation.SimulationParameters (timestep=0.01, diffu-
sion_constant=0.001,
mean_division_time=10, divi-
sion_time_distribution="normal’,
division_time_std=0, tar-
get_num_cells=inf, muta-
tion_rate=1, flow_type='"bifurcation’,
x0_speed=1, barcode_length=15,

back_mutations=False, num_genes=3,
initial_distribution_std=0,
alphabet_size=200, rela-
tive_mutation_likelihoods=array([ 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0]), keep_tree=True, en-
force_barcode_reproducibility=True,

keep_cell_seeds=True)
Bases: object

Storing the parameters for simulated data

lineageot.simulation.center (barcode, params)
Returns the center of the distribution p(x0Olbarcode)

lineageot.simulation.convergent_f£flow (x, params)
Single bifurcation followed by convergence of the two clusters

lineageot.simulation.convert_data_to_arrays (data)
Converts a list of cells to two ndarrays, one for expression and one for barcodes

lineageot.simulation.evolve_b (initial_barcode, time, params)
Returns the new barcode after mutations have occurred for some time

lineageot.simulation.evolve_cell (initial_cell, time, params)
Returns a new cell after both barcode and x have evolved for some time

lineageot.simulation.evolve_x (initial_x, time, params)
Returns a sample from Langevin dynamics following potential_gradient

6 Chapter 1. Modules
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lineageot.simulation.flatten_list_of lists (free_data)
Converts a dataset of cells with their ancestral tree structure to a list of cells (with ancestor and time information
dropped)

lineageot.simulation.mask_barcode (barcode, p)
Replaces a subset of the entries of barcode with -1 to simulate missing data

Entries are masked independently with probability p
Also works for an array of barcodes

lineageot.simulation.mismatched clusters_flow (x, params)
Single bifurcation followed by bifurcation of each cluster

lineageot.simulation.mutate_barcode (barcode, params)
Randomly changes one entry of the barcode

lineageot.simulation.partial_convergent_flow (x, params)
Single bifurcation followed by bifurcation of each cluster, where two of the new clusters subsequently merge

lineageot.simulation.reproducible_poisson (rate)
Samples a single Poisson random variable, in a way that is reproducible, i.e. after

np.random.seed(s) a = divisible_poisson(rl) np.random.seed(s) b = divisible_poisson(12)
with rl > r2, b ~ binomial(n = a, p =12/r1)

This is the standard numpy Poisson sampling algorithm for rate <= 10.

Note that this is relatively slow, running in O(rate) time.

lineageot.simulation.sample_barcode (params)
Samples an initial barcode

lineageot.simulation.sample_cell (params)
Samples an initial cell

lineageot.simulation.sample_descendants (initial_cell, time, params, tar-
get_num_cells=None)
Samples the descendants of an initial cell

lineageot.simulation.sample_division_time (params)
Samples the time until a cell divides

lineageot.simulation.sample_pop (num_initial_cells, time, params)
Samples a population after some intervening time

num_initial_cells: Number of cells in the population at time O time: Time when population is measured params:
Simulation parameters

lineageot.simulation.sample_population_descendants (pop, time, params)
Samples the descendants of each cell in a population pop: list of (expression, barcode) tuples

lineageot.simulation.sample_x0 (barcode, params)
Samples the initial position in gene expression space

lineageot.simulation.single_bifurcation_flow (x)

lineageot.simulation.split_targets_between_daughters (time_remaining, tar-

get_num_cells, params)
Given a target number of cells to sample, divides the samples between daughters assuming both have the ex-

pected number of descendants at the sampling time

lineageot.simulation.subsample_list (sample, target_num_cells)
Randomly samples target_num_cells from the sample

1.2. Simulations 7
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If there are fewer than target_num_cells in the sample, returns the whole sample

lineageot.simulation.subsample_pop (sample, target_num_cells, params, num_cells=None)
Randomly samples target num_cells from the sample. Subsampling during the simulation by setting
params.target_num_cells is a more efficient approximation of this.

If there are fewer than target_num_cells in the sample, returns the whole sample
sample should be either:

* alist of cells, if params.keep_tree is False

* nested lists of lists of cells encoding the tree structure, if params.keep_tree is True
(i.e., it should match the output of sample_descendants with the same params)

lineageot.simulation.vector_field (x, params)
Selects a vector field and returns its value at x

1.3 Inference

This module contains the implementation of LineageOT used by the core functions.

class lineageot.inference.NeighborJoinNode (subtree, subtree_root, has_global_root)
Bases: object

lineageot.inference.OT_cost (coupling, cost)

lineageot.inference.add_conditional_means_and_variances (free, observed_nodes)
Adds the mean and variance of the posterior on ‘x’ for each of the unobserved nodes, conditional on the observed
values of ‘x’ in observed_nodes, assuming that differences along edges are Gaussian with variance equal to the
length of the edge.

In doing so, also adds inverse time annotations to edges.

If no nodes in tree are observed, inverse time annotations are added but conditional means and variances are not
(as there is nothing to condition on).

lineageot.inference.add _division_times_from vertex times (free, cur-

) ) ) ) rent_node="root")
Adds ‘time_to_parent’ variables to nodes, based on ‘time’ annotations

lineageot.inference.add_inverse_times_to_edges (free)
Labels each edge of the tree with ‘inverse time’ equal to 1/edge[ ‘time’]

lineageot.inference.add_leaf_barcodes (tree, barcode_array)
Adds barcodes from barcode_array to the corresponding leaves of the tree

lineageot.inference.add_leaf_ times (tree, final_time)
Adds the known final time to all leaves and O as the root time

lineageot.inference.add_leaf x (tree, x_array)
Adds expression vectors from x_array to the corresponding leaves of the tree

lineageot.inference.add_node_times_from dict (tree, current_node, time_dict)
Adds times from time_dict to current_node and its descendants

lineageot.inference.add _node_times_from_division_times (ftree, current_node='"root’,

) overwrite=False)
Adds ‘time’ variable to all descendants of current_node based on the ‘time_to_parent’ variable
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lineageot.inference.add_nodes_at_time (free, time_to_add, current_node="root’,

num_nodes_added=0)
Splits every edge (u,v) where u[‘time’] < time_to_add < v[‘time’]

into (u, w) and (w, v) with w[‘time’] = time_to_add
Newly added nodes {w} are labeled as tuples (time_to_add, 1)
The input tree should be annotated with node times already

lineageot.inference.add_samples_to_clone_tree (clone_matrix, clone_times,

clone_reference_tree, sampling_time)
Adds a leaf for each row in clone_matrix to clone_reference_tree. The parent is set as the clone that the cell is

a member of with the latest labeling time.
clone_reference_tree is edited in place rather than returned.
Parameters

* clone _matrix (Boolean array with shape [num cells,
num_clones]) — Each entry is 1 if the corresponding cell belongs to the corresponding
clone and zero otherwise.

* clone_times (Vector of length num_clones)— Each entry has the time of la-
beling of the corresponding clone.

* clone_reference_tree — The tree of lineage relationships among clones.

* sampling_ time (Number) — The time of sampling of the cells. Should be greater than
all clone labeling times.

lineageot.inference.add_times (free, mutation_rates, time_inference_method, overwrite=False)
Adds estimated division times/edge lengths to a tree

The tree should already have all node barcodes estimated

lineageot.inference.add_times_to_edges (free)
Labels each edge of tree with ‘time’ taken from ‘time_to_parent’ of its endpoint

lineageot.inference.annotate_tree (tree, mutation_rates, time_inference_method="independent’,

overwrite_times=False)
Adds barcodes and times to internal (ancestor) nodes so likelihoods can be computed

Barcodes are inferred by putting minimizing the number of mutation events required, assuming a model with no
back mutations and a known initial barcode

lineageot.inference.barcode_distances (barcode_array)
Computes all pairwise lineage distances between barcodes

lineageot.inference.compute_leaf times (tree, num_leaves)
Computes the list of times of the leaves by adding ‘time_to_parent’ along the path to ‘root’

lineageot.inference.compute_new_distances (distance_matrix, nodes_to_join)

lineageot.inference.compute_q matrix (distance_matrix)
Computes the Q-matrix for neighbor joining

lineageot.inference.compute_tree_distances (tree)
Computes the matrix of pairwise distances between leaves of the tree

lineageot.inference.convert_newick_to_networkx (newick_tree, leaf labels,
leaf time=None, root_label="root’,
unlabeled _nodes_added=0,

at_global_root=True)
Converts a tree from the Newick package’s format to LineageOT’s annotated NetworkX DiGraph. Ignores

1.3. Inference 9
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existing annotations, except edge lengths.
Parameters

* newick tree (newick.Node or [newick.Node])— A treeloaded by the Newick
package.

* leaf labels (1ist)- The label of each leaf in the Newick tree, sorted to align with the
gene expression AnnData object filtered to cells at the corresponding time

* leaf time (float (default None)) - The time of sampling of the leaves. If un-
specified, the root of the tree is assigned time 0.

e root_label (str (default 'root'))- The label of the root node of the tree

* unlabeled_nodes_added (int (default 0)) — The number of previously-
unlabeled nodes that have already been added to the tree. Leave as O for any top-level
use of the function.

* at_global_root (bool (default True))— Whether the function is being called
to convert a full tree or a subtree.

Returns tree — The saved tree, in LineageOT’s format.  Each node is annotated with
‘time_to_parent’ and ‘time’ (which indicates either the time of sampling (for observed cells)
or the time of division (for unobserved ancestors)). Edges are directed from parent to child and
are annotated with ‘time’ equal to the child node’s ‘time_to_parent’. Observed node indices
correspond to their index in leaf_labels.

Return type Networkx DiGraph

lineageot.inference.cvxopt_qgp_from numpy (P, q, G, h)
Converts arguments to cvxopt matrices and runs cvxopt’s quadratic programming solver

lineageot.inference.distances_to_joined_node (distance_matrix, nodes_to_join)

lineageot.inference.estimate_division_time (child, parent, mutation_rates)
Estimates the lifetime of child, i.e. the time between when parent divided to make child and when child divided

Input arguments are nodes in a lineage tree, i.e. dicts

lineageot.inference.extract_ancestor_data_arrays (late_tree, time, params)
Returns arrays of the RNA expression and barcodes for ancestors of leaves of the tree

Each row of each array is a leaf node

lineageot.inference.extract_data_arrays (free)
Returns arrays of the RNA expression and barcodes from leaves of the tree

Each row of each array is a cell

lineageot.inference.find_parent_clone (clone, clone_matrix, clone_times)
Returns the parent of a subclone, assuming this is uniquely defined as the clone from an earlier time point whose
barcode was observed in a cell from the subclone.

Parameters
* clone (int) - Index of clone whose parent will be returned

e clone matrix (Boolean array with shape [num cells,
num_clones]) — Each entry is 1 if the corresponding cell belongs to the corresponding
clone and zero otherwise.

* clone_times (Vector of length num_clones)— Each entry has the time of la-
beling of the corresponding clone.

10 Chapter 1. Modules
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Returns parent — Index of parent clone.
Return type int
lineageot.inference.get_ancestor_data (tree, time, leaf=None)

lineageot.inference.get_components (graph, edge_length_key='"time')
Returns subgraph views corresponding to connected components of the graph if edges of infinite length are
removed

Parameters

* graph (NetworkX graph)-—

* edge_length_key (default 'time')-—
Returns subgraphs
Return type List of NetworkX subgraph views

lineageot.inference.get_internal_nodes (free)
Returns a list of the non-leaf nodes of a tree

lineageot.inference.get_leaf_ descendants (tree, node)
Returns a list of the leaf nodes of the tree that are descendants of node

lineageot.inference.get_leaves (tree, include_root=True)
Returns a list of the leaf nodes of a tree including the root

lineageot.inference.get_lineage_distances_across_time (early_tree, late_tree)
Returns the matrix of lineage distances between leaves of early_tree and leaves in late_tree. Assumes that
early_tree is a truncated version of late_tree

lineageot.inference.get_parent_clone_of_leaf (leaf, clone_matrix, clone_times)
Returns the index of the clone that the leaf is a member of with the latest labeling time.

lineageot.inference.get_true_coupling (early_tree, late_tree)
Returns the coupling between leaves of early_tree and their descendants in late_tree. Assumes that early_tree is
a truncated version of late_tree

The marginal over the early cells is uniform; if cells have different numbers of descendants, the marginal over
late cells will not be uniform.

lineageot.inference. join_nodes (nodel, node2, new_root, distances)

lineageot.inference.list_tree_to_digraph (list_tree)
Converts a tree stored as nested lists to a networkx DiGraph

Internal nodes are indexed by negative integers, leaves by nonnegative integers

lineageot.inference.make_clone_reference_tree (clone_matrix, clone_times, root_time=-

inf)
Makes a tree with nodes for each clone.
Parameters
* clone_matrix (Boolean array with shape [num _cells,

num_clones]) — Each entry is 1 if the corresponding cell belongs to the corresponding
clone and zero otherwise.

* clone_times (Vector of length num_clones)— Each entry has the time of la-
beling of the corresponding clone.

e root_time (Number, default -np.inf) - The time of the most recent common
ancestor of all clones. If -np.inf, clone subtrees are effectively treated independently.

1.3. Inference 11
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Returns clone_reference_tree — A tree of clones (not sampled cells), annotated with edge and node
times

Return type NetworkX DiGraph
lineageot.inference.make_tree_from clones (clone_matrix, time, clone_times, root_time=-
inf)
Adds a leaf for each row in clone_matrix to clone_reference_tree. The parent is set as the clone that the cell is
a member of with the latest labeling time.
clone_reference_tree is edited in place rather than returned.

Parameters

* clone_matrix (Boolean array with shape [num cells,
num_clones]) — Each entry is 1 if the corresponding cell belongs to the corresponding
clone and zero otherwise.

* clone_times (Vector of length num_clones)— Each entry has the time of la-
beling of the corresponding clone.

* time (Number) — The time of sampling of cells.

* root_time (Number, default -np.inf) - The time of the most recent common
ancestor of all clones. If -np.inf, clones are effectively treated as unrelated

Returns fitted_tree — A tree annotated with edge and node times
Return type NetworkX DiGraph

lineageot.inference.make_tree_from nonnested_clones (clone_matrix, time,

root_time_factor=1000)
Creates a forest of stars from clonally-labeled data. The centers of the stars are connected to a root far in the

past.
Parameters

e clone matrix (Boolean array with shape [num _cells,
num_clones]) — Each entry is 1 if the corresponding cell belongs to the corresponding
clone and zero otherwise. Each cell should belong to exactly one clone.

* time (Number) — The time of sampling of cells relative to initial clonal labelling.

e root_time_factor (Number, default 1000) — Relative time to root of tree
(i.e., most recent common ancestor of all cells). The time of the root is set to -
root_time_factor*time. The default is large so minimal information is shared across clones.

Returns fitted_tree — A tree annotated with edge and node times
Return type NetworkX DiGraph

lineageot.inference.neighbor_join (distance_matrix)
Creates a tree by neighbor joining with the input distance matrix

Final row/column of distance_matrix assumed to correspond to the root (unmutated) barcode

lineageot.inference.pick_joined_nodes (Q)
In default neighbor joining, returns the indices of the pair of nodes with the lowest Q value

TODO: extend to allow stochastic neighbor joining

lineageot.inference.rate_estimator (barcode_array, time)
Estimates the mutation rate based on the number of unmutated barcodes remaining.

12 Chapter 1. Modules
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lineageot.inference.recursive_add_barcodes (tree, current_node)
Fills in the barcodes for internal nodes for a tree whose leaves have barcodes

Minimizes the number of mutation events that occur, assuming no backmutations and a known initial barcode

lineageot.inference.recursive_list_tree_to_digraph (list_tree, next_internal_node,

next_leaf node)
Recursive helper function for list_tree_to_digraph

Returns (current_tree, next_internal_node_label, root_of_current_tree)

lineageot.inference.remove_node_and_descendants (tree, node)
Removes a node and all its descendants from the tree

lineageot.inference.remove_times (tree)
Removes time annotations from nodes and edges of a tree

lineageot.inference.resample_cells (tree, params, current_node='"root', inplace=False)
Runs a new simulation of the cell evolution on a fixed tree

lineageot.inference.robinson_foulds (freel, tree2)
Computes the Robinson-Foulds distance between two trees

lineageot.inference.scaled_Hamming_ distance (barcodel, barcode?2)
Computes the distance between two barcodes, adjusted for

(1) the number of sites where both cells were measured and
(2) distance between two scars is twice the distance from
scarred to unscarred
lineageot.inference.split_edge (tree, edge, new_node)

lineageot.inference.subtree_to_ete3 (free, current_root)
Converts the subtree from current_root to ete3 format

lineageot.inference.tree_accuracy (treel, tree2)
Returns the fraction of nontrivial splits appearing in both trees

lineageot.inference.tree_discrepancy (treel, tree2)
Computes a version of the Robinson-Foulds distance between two trees rescaled to be between 0 and 1

lineageot.inference.tree_to_ete3 (tree)
Converts a tree to ete3 format. Useful for calculating Robinson-Foulds distance.

lineageot.inference.truncate_tree (free, new_end_time, params, inplace=False, cur-

rent_node="root', next_leaf to_add=0)
Removes all nodes at times greater than new_end_time and adds new leaves at exactly new_end_time

params: simulation parameters used to create tree

1.4 Evaluation

This module contains functions for examining couplings after they are fitted, including comparing to a known ground
truth. Nothing here is required for applying LineageOT to experimental data.

lineageot.evaluation.coupling W2 (coupling_I, coupling_2, source, target, epsilon)
Returns the entropically-regularized W2 distance between two couplings

lineageot.evaluation.coupling to_coupling cost_matrix (source, target)
Returns the (n_source*n_target)*(n_source*n_target) cost matrix for a W2 distance between two couplings of
source and target

1.4. Evaluation 13
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Source and target here are just expression samples, without barcodes

lineageot.evaluation.expand_coupling (¢, true_coupling,  distances,  matched_dim=0,
max_dims_used=inf, xs_used=None)
Parameters
e c (ndarray, shape (nx, ny) 1f matched dim == 0, (ny, nx) if
matched_dim == 1)- Coupling between source x and target y
* true_coupling (ndarray, shape (nx, nz) 1f matched dim == 0,
(nz, nx) 1if matched_dim == 1)- Reference coupling between x and z

* distances (ndarray, shape (nz, ny))-—Pairwise distances between z and y
* matched_dim (int) - Dimension in which ¢ and true coupling

* max_dims_used (int or np.inf) — Set a finite value here to do an approximate
calculation based on min(nx, max_dims_used) elements of x

* xs_used (list or None)-Indices of matched_dim to use in approximate calculation.
If None and max_dims_used<nx, indices are randomly selected.

Returns expanded_coupling — Optimal coupling between z and y consistent with the coupling ¢

Return type ndarray, shape same as true_couplings

lineageot
lineageot
lineageot

lineageot

.evaluation.expand_coupling_ independent (c, true_coupling)
.evaluation.l2_difference (coupling_I, coupling_2)
.evaluation.normalize_columns (coupling)

.evaluation.pairwise_squared_distances (data)

Returns the pairwise squared distances between rows of the data matrix

lineageot.evaluation.plot2D_samples_mat (xs, xt, G, thr=1e-08, alpha_scale=1, **kwargs)
Plot matrix M in 2D with lines using alpha values

Plot lines between source and target 2D samples with a color proportional to the value of the matrix G between

samples.

Copied function from PythonOT and added alpha_scale parameter

Parameters

* xs (ndarray, shape (ns,Z2))- Source samples positions

* b(ndarray, shape (nt,2))- Targetsamples positions

e G(ndarray, shape (na,nb))- OT matrix

e thr (float, optional) - threshold above which the line is drawn

* xxkwargs (dict) — parameters given to the plot functions (default color is black if noth-
ing given)

lineageot.evaluation.plot_metrics (couplings, cost_func, cost_func_name, epsilons,

log=False, points=False, scale=1.0, label_font_size=18,
tick_font_size=12)

Plots cost_func evaluated as a function of epsilon

lineageot.evaluation.print_metrics (couplings, cost_func, cost_func_name, log=False)
Prints cost_func evaluated for each coupling in the dictionary couplings

14
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lineageot.evaluation.sample_coordinates_from_coupling (c, row_points, column_points,
num_samples=None, re-
) turn_all=False, thr=1e-06)
Generates [X, y] samples from the coupling c.
If return_all is True, returns [x,y] coordinates of every pair with coupling value >thr

lineageot.evaluation.sample_indices_from coupling (c, num_samples=None, re-

turn_all=False, thr=1e-06)
Generates [row, column] samples from the coupling c

If return_all is True, then returns all indices with coupling values above the threshold

lineageot.evaluation.sample_interpolant (coupling, row_points, column_points, t=0.5,
num_samples=None, return_all=False, thr=Ie-

06)
Samples from the interpolated distribution implied by the coupling

If return_all is True, returns the interpolants between every pair with coupling value >thr. This is the
interpolant distribution if and only if all nonzero values of the coupling are identical and >thr.

lineageot.evaluation.scaled_12_difference (coupling_I, coupling_2)

lineageot.evaluation.squeeze_coupling (c, row_cluster_labels=None, col-
umn_cluster_labels=None)

lineageot.evaluation.squeeze_coupling by late_cluster (c, index)

lineageot.evaluation.twv (couplingl, coupling2)

exact

1.4. Evaluation

15



LineageOT, Release 0.2.0

16 Chapter 1. Modules



CHAPTER
TWO

LINEAGEOT EXAMPLES

Here is a gallery of examples of LineageOT.

2.1 Minimal pipeline example

import anndata
import lineageot
import numpy as np

rng = np.random.default_rng()

2.1.1 Creating data

First we make a minimal fake AnnData object to run LineageOT on.

tl = 5;
t2 = 10;

n_cells_1 = 5;
n_cells_2 10;
n_cells = n_cells_1 + n_cells_2;

n_genes = 5;
barcode_length = 10;

adata = anndata.AnnData (X = np.random.rand(n_cells, n_genes),

obs = {"time" : np.concatenate([tl*np.ones(n_cells_1), t2xnp.
—ones (n_cells_2)])},

obsm = {"barcodes" : rng.integers(low = -1, high = 10, size =
— (n_cells, barcode_length))}

)

17
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2.1.2 Fitting a lineage tree

Before running LineageOT, we need to build a lineage tree from the observed barcodes. This step is not optimized.
We provide an implementation of a heuristic algorithm called neighbor joining. Feel free to use your own preferred
tree construction algorithm. You can import a tree saved in Newick format with 1ineageot .read_newick.

The tree should be formatted as a NetworkX DiGraph in the same way as the output of lineageot.fit_tree ()
Each node is annotated with 'time' (which indicates either the time of sampling (for observed cells) or the time of
division (for unobserved ancestors). Edges are directed from parent to child and are annotated with 'time' equal
to the child node’s 'time_to_parent'. Observed node indices correspond to their row in adata[adata.
obs['time'] == t2].

lineage_tree_t2 = lineageot.fit_tree(adataladata.obs['time'] == t2], t2)

2.1.3 Running LineageOT

Once we have a lineage tree annotated with time, we can compute a LineageOT coupling.

coupling = lineageot.fit_lineage_coupling(adata, tl, t2, lineage_tree_t2)

2.1.4 Saving

The LineageOT package does not include functionality for downstream analysis and plotting. We recommend transi-
tioning to other packages, like Waddington-OT, after computing a coupling. This saves the fitted coupling in a format
Waddington-OT can import.

’lineageot.save_coupling_as_tmap(coupling, tl, t2, './tmaps/example')

Total running time of the script: ( 0 minutes 0.000 seconds)

2.2 LineageOT with static lineage tracing

While designed for dynamic lineage tracing with continuously edited barcodes, LineageOT can be applied to any time
course where a lineage tree can be created, including static barcoding data.

With some forms of static barcoding, more information is available than LineageOT uses. LineageOT does not account
for the possibility that the same barcode could be observed at multiple time points. If that happens in your data, you
can still use LineageOT, but should also consider other methods.

import anndata
import lineageot
import numpy as np

rng = np.random.default_rng()
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2.2.1 Creating data

First we make a minimal fake AnnData object to run LineageOT on. Here, the lineage information is encoded in a
Boolean matrix with cells as rows and clones as column, where entry [i, J] is | if and only if cell i belongs to
clone j. This example has two initial clones labeled at time 0 and four subclones labeled at time 7.

In addition to the clone identities, LineageOT also needs a time for each clone. This is encoded in the vector
clone_times, whose entries give the time of labeling of the clones.

tl = 5;
t2 = 10;

n_cells_1 = 4;
n_cells_2 8;
n_cells = n_cells_1 + n_cells_2;

n_genes = 5;

# clones labeled at time 0
time_0_clones = np.concatenate([np.kron(np.identity(2), np.ones((2,1))),
np.kron(np.identity(2), np.ones((4,1)))1)
# clones labeled at time 7
time_7_clones = np.concatenate([np.zeros((4,4)),
np.kron(np.identity(4), np.ones((2,1)))1)
clones = np.concatenate([time_0_clones, time_7_clones], 1)

clone_times = np.array ([0, 0, 7, 7, 7, 71)

adata = anndata.AnnData (X = np.random.rand(n_cells, n_genes),

obs = {"time" : np.concatenate([tl*np.ones(n_cells_1), t2xnp.
—ones(n_cells_2)1])},

obsm = {"X_clone" : clones}

)

print (clones)

Out:
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2.2.2 Fitting a lineage tree

Before running LineageOT, we need to build a lineage tree from the observed barcodes. For static lineage tracing data,
we provide an algorithm to construct a tree of possibly-nested clones, assuming there are no barcode collisions across
clones so the phylogeny is straightforward to reconstruct. This step is not optimized. Feel free to use your own pre-
ferred tree construction algorithm. You can import a tree saved in Newick format with 1 ineageot . read_newick.

The tree should be formatted as a NetworkX DiGraph in the same way as the output of Lineageot.fit_tree ()
Each node is annotated with 'time' (which indicates either the time of sampling (for observed cells) or the time of
division (for unobserved ancestors). Edges are directed from parent to child and are annotated with 'time' equal
to the child node’s 'time_to_parent'. Observed node indices correspond to their row in adata[adata.
obs['time'] == t2].

lineage_tree_t2 = lineageot.fit_tree(adataladata.obs['time'] == t2], t2, clone_times
—= clone_times, method = 'clones')

2.2.3 Running LineageOT

Once we have a lineage tree annotated with time, we can compute a LineageOT coupling.

coupling = lineageot.fit_lineage_coupling(adata, tl, t2, lineage_tree_t2)

2.2.4 Saving

The LineageOT package does not include functionality for downstream analysis and plotting. We recommend transi-
tioning to other packages, like Waddington-OT, after computing a coupling. This saves the fitted coupling in a format
Waddington-OT can import.

’lineageot.save_coupling_as_tmap(coupling, tl, t2, './tmaps/example')

Total running time of the script: ( 0 minutes 0.132 seconds)

2.3 LineageOT on a convergent trajectory

This shows results of applying LineageOT to a simulation of convergent trajectories, closely following
simulation_demo.ipynb in the source code.

import copy

import matplotlib.pyplot as plt
import numpy as np

import ot

import lineageot.simulation as sim
import lineageot.evaluation as sim_eval
import lineageot.inference as sim_inf
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2.3.1 Generating simulated data

flow_type = 'convergent'
np.random.seed (257)

Setting simulation parameters

if flow_type == 'bifurcation':
timescale = 1

else:
timescale = 100

x0_speed = 1/timescale

sim_params

sim.SimulationParameters (division_time_std = 0.0lxtimescale,
flow_type = flow_type,
x0_speed = x0_speed,
mutation_rate = 1/timescale,
mean_division_time = 1.lxtimescale,
timestep = 0.00l+timescale

mean_x0_early = 2
time_early
time_late = time_early + 4xtimescale # Time when late cells are sampled
x0_initial mean_x0_early -time_early+x0_speed

4+xtimescale # Time when early cells are sampled

initial_cell = sim.Cell (np.array([x0_initial, 0, 0]), np.zeros(sim_params.barcode_
—length))
sample_times = {'early' : time_early, 'late' : time_late}

# Choosing which of the three dimensions to show in later plots

if flow_type == 'mismatched_clusters':
dimensions_to_plot = [1,2]

else:
dimensions_to_plot = [0,1]

Running the simulation

sample = sim.sample_descendants (initial_cell.deepcopy (), time_late, sim_params)

2.3.2 Processing simulation output

# Extracting trees and barcode matrices
true_trees {'late':sim_inf.list_tree_to_digraph (sample)}
true_trees['late'].nodes['root']['cell'] = initial_cell

true_trees['early'] = sim_inf.truncate_tree(true_trees['late'], sample_times['early'],
< sim_params)

# Computing the ground-truth coupling

couplings = {'true': sim_inf.get_true_coupling(true_trees|['early'], true_trees|['late
—='1)}
data_arrays = {'late' : sim_inf.extract_data_arrays (true_trees['late'])}

(continues on next page)

2.3. LineageOT on a convergent trajectory 21




LineageOT, Release 0.2.0

(continued from previous page)

rna_arrays = {'late': data_arrays(['late'][0]}

barcode_arrays = {'late': data_arrays|['late'][1]}

rna_arrays['early'] = sim_inf.extract_data_arrays(true_trees['early']) [0]
num_cells = {'early': rna_arrays|['early'].shape[0], 'late': rna_arrays|['late'].
—shape[0]}

print ("Times : ", sample_times)

print ("Number of cells: ", num_cells)

# Creating a copy of the true tree for use in LineageOT

true_trees['late, annotated'] = copy.deepcopy(true_trees['late'])
sim_inf.add_node_times_from_division_times (true_trees['late, annotated'])
sim_inf.add_nodes_at_time (true_trees|['late, annotated'], sample_times['early']);

# Scatter plot of cell states

cmap = "coolwarm"
colors = [plt.get_cmap (cmap) (0), plt.get_cmap (cmap) (256) ]
for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays['late']], ['Early cells’',

—'Late cells'], colors):
plt.scatter(al:, dimensions_to_plot[0]], al:, dimensions_to_plot[l]], alpha = 0.4,
— label = label, color = c)

plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[1l] + 1))
plt.legend();
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Out:
Times : {'early': 400, 'late': 800}

Number of cells: {'early': 8, 'late': 128}

<matplotlib.legend.Legend object at 0x7£1289b5£150>

Since these are simulations, we can compute and plot inferred ancestor locations based on the true tree.

# Infer ancestor locations for the late cells based on the true lineage tree
observed_nodes = [n for n in sim_inf.get_leaves (true_trees['late, annotated'],
—include_root=False) ]

sim_inf.add_conditional_means_and_variances (true_trees|['late, annotated'], observed_
—nodes)

ancestor_info = {'true tree':sim_inf.get_ancestor_data(true_trees['late, annotated'],
—sample_times['early'])}

# Scatter plot of cell states, with inferred ancestor locations for the late cells

for a,label, ¢ in zip([rna_arrays['early'], rna_arrays['late']], ['Early cells',
—'Late cells'], colors):

plt.scatter(al:, dimensions_to_plot[0]], al:, dimensions_to_plot[1l]], alpha = 0.4,
— label = label, color = c)
plt.scatter (ancestor_info['true tree'][0][:,dimensions_to_plot([0]],

(continues on next page)
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(continued from previous page)

ancestor_info['true tree'][0][:,dimensions_to_plot[1l]],

alpha = 0.1,
label = '"Inferred ancestors',
color = 'green')

plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[l] + 1))
plt.legend();
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Gene 1
Out:

<matplotlib.legend.Legend object at 0x7£1289%9a24290>

To better visualize cases where there were two clusters at the early time point, we can color the late cells (and their
inferred ancestors) by their cluster of origin Cells in orange are from the late time point with ancestors on the left;
cells in green are from the late time point with ancestors on the right. Though the green and orange distributions
substantially overlap, the estimated ancestor distributions in red and purple are separate.

is_from left = sim_inf.extract_ancestor_data_arrays(true_trees|['late'], sample_times]|
—'early'], sim_params) [0][:,1] < O

for a,label in zip([rna_arrays|['early'], rna_arrays|['late'][is_from_ left,:], rna_
—arrays|['late'] [~is_from_left,:]], ['Early cells', 'Late cells from left', 'Late,

—cells from right']):
plt.scatter(al:, 11, al:, 2], alpha = 0.4)

(continues on next page)
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(continued from previous page)

plt.xlabel ('Gene 2')
plt.ylabel ('"Gene 3'")

for a, label in zip([ancestor_info['true tree'][0][is_from_left, :1],

—'true tree'][0] [~is_from_left, :]1], ['Left ancestors',
plt.scatter(al:,1], al:,2], alpha
plt.legend()

ancestor_info[
'Right ancestors']):
0.4, label = label)

Left ancestors
Right ancestors
1.5 - g
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0.5 4
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e
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Out:

<matplotlib.legend.Legend object at 0x7£12899dabl0O>

2.3.3 Running LineageOT

The first step is to fit a lineage tree to observed barcodes

# True distances
true_distances =

= {key:sim_inf.compute_tree_distances (true_trees|[key]) for key in true_

—trees}

# Estimate mutation rate from fraction of unmutated barcodes

(continues on next page)
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(continued from previous page)

rate_estimate = sim_inf.rate_estimator (barcode_arrays|['late'], sample_times['late'])

# Compute Hamming distance matrices for neighbor joining
hamming_distances_with_roots = {'late':sim_inf.barcode_distances (np.
—concatenate ([barcode_arrays|['late'],

np.
—~zeros ([1l,sim_params.barcode_length])]))}

# Compute neighbor-joining tree

fitted_tree = sim_inf.neighbor_join (hamming_distances_with_roots['late'])
Once the tree is computed, we need to annotate it with node times and states

# Annotate fitted tree with internal node times

sim_inf.add_leaf_barcodes (fitted_tree, barcode_arrays|['late'])

sim_inf.add_leaf x(fitted_tree, rna_arrays|'late'])

sim_inf.add_leaf_times (fitted_tree, sample_times['late'])
sim_inf.annotate_tree(fitted_tree,

rate_estimatexnp.ones (sim_params.barcode_length),
time_inference_method = 'least_squares');
# Add inferred ancestor nodes and states
sim_inf.add_node_times_from_division_times (fitted_tree)
sim_inf.add_nodes_at_time(fitted_tree, sample_times|['early'])
observed_nodes = [n for n in sim_inf.get_leaves(fitted_tree, include_root = False) ]
sim_inf.add_conditional_means_and_variances (fitted_tree, observed_nodes)
ancestor_info['fitted tree'] = sim_inf.get_ancestor_data(fitted_tree, sample_times]|
—~'early'])
Out:
pcost dcost gap pres dres

0: -4.0661e+07 -4.2066e+07 6e+06 1e-01 2e-01

1: -4.0696e+07 -4.1441e+07 8e+05 8e-03 2e-02

2: —4.0803e+07 -4.1023e+07 2e+05 2e-03 4e-03

3: -4.0851e+07 -4.0887e+07 4e+04 1le-16 1le-16

4: -4.0862e+07 —-4.0866e+07 4e+03 1le-16 2e-16

5: -4.0863e+07 -4.0864e+07 3e+02 1le-16 2e-16

6: —-4.0863e+07 -4.0863e+07 1le+01 1le-16 4de-16
Optimal solution found.
We’re now ready to compute LineageOT cost matrices

# Compute cost matrices for each method
coupling_costs = {}
coupling_costs['lineageOT, true tree'] = ot.utils.dist(rna_arrays|['early'], ancestor_
—info['true tree'][0])@np.diag(ancestor_info['true tree'][1]**(-1))
coupling_costs['OT'] = ot.utils.dist (rna_arrays|['early'], rna_arrays['late'l])
coupling_costs['lineageOT, fitted tree'] = ot.utils.dist (rna_arrays|['early'], .
—ancestor_info['fitted tree'][0])@np.diag(ancestor_info['fitted tree'][1l]**(-1))
early_time_rna_cost = ot.utils.dist(rna_arrays['early'], sim_inf.extract_ancestor_
—data_arrays (true_trees['late'], sample_times['early'], sim_params) [0])
late_time_rna_cost = ot.utils.dist (rna_arrays|['late'], rna_arrays|['late'])

Given the cost matrices, we can fit couplings with a range of entropy parameters.
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epsilons = np.logspace (-2, 3, 15)

couplings['OT'] = ot.emd([],[],coupling_costs['OT"'])
couplings|['lineageOT'] = ot.emd([], [], coupling_costs['lineageOT, true tree'])
couplings|['lineageOT, fitted'] = ot.emd([], [], coupling_costs['lineageOT, fitted tree

="'1)
for e in epsilons:
if e >=0.1:
f = ot.sinkhorn
else:
# Epsilon scaling is more robust at smaller epsilon, but slower than simple_,
—sinkhorn

f = ot.bregman.sinkhorn_epsilon_scaling
couplings|['entropic rna ' + str(e)] = £([],[],coupling_costs['OT'], e)
couplings|['lineage entropic rna ' + str(e)] = £([], [], coupling_costs['lineageOT,
— true tree'], exnp.mean (ancestor_info['true tree'][1]*%(-1)))
couplings(['fitted lineage rna ' + str(e)] = £([], [], coupling_costs['lineageOT,

—~fitted tree'], exnp.mean(ancestor_info['fitted tree'][1]**x(-1)))

Out:

/home/docs/checkouts/readthedocs.org/user_builds/lineageot/envs/stable/lib/python3.7/
—site-packages/ot/bregman.py:1112: UserWarning: Sinkhorn did not converge. You might
—want to increase the number of iterations “numItermax’ or the regularization_
—parameter ‘reg .

warnings.warn ("Sinkhorn did not converge. You might want to "

2.3.4 Evaluation of couplings

First compute the independent coupling as a reference

couplings|['independent'] = np.ones (couplings['OT'].shape)/couplings['OT'].size
ind_ancestor_error = sim_inf.OT_cost (couplings|['independent'], early_time_rna_cost)
ind_descendant_error = sim_inf.OT_cost (sim_eval.expand_coupling(couplings|['independent
‘*"}I
couplings(['true'],
late_time_rna_cost),
late_time_rna_cost)

Plotting the accuracy of ancestor prediction

ancestor_errors = sim_eval.plot_metrics (couplings,

lambda x:sim_inf.OT_cost(x, early_time_rna_
—cost),

'Normalized ancestor error',

epsilons,

scale = ind_ancestor_error,

points=False)
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Plotting the accuracy of descendant prediction

descendant_errors = sim_eval.plot_metrics (couplings,
lambda x:sim_inf.OT_cost (sim_eval.expand_
—coupling(x,

AN couplings|['true'],
N late_time_rna_cost),

late_time_rna_
—cost),

'Normalized descendant error',
epsilons, scale = ind_descendant_error)
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2.3.5 Coupling visualizations

Visualizing the ground-truth coupling, zero-entropy LineageOT coupling, and zero-entropy optimal transport coupling.

Ground truth:

sim_eval.plot2D_samples_mat (rna_arrays|['early'][:, [dimensions_to_plot[0],dimensions_
—to_plot[1]]],

rna_arrays|['late'][:, [dimensions_to_plot[0],dimensions_to_
—plot[1l]]],

couplings|['true'],

c=[0.2, 0.8, 0.5],

alpha_scale = 0.1)

plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[l] + 1))
plt.title('True coupling')

for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays|['late']], ['Early cells',
—'Late cells'], colors):

plt.scatter(al[:, dimensions_to_plot[0]], al:, dimensions_to_plot[l]], alpha = 0.4,
— label = label, color = c)
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LineageOT:

sim_eval.plot2D_samples_mat (rna_arrays|['early'][:, [dimensions_to_plot[0],dimensions_
—to_plot[1l]111],

rna_arrays|['late'][:, [dimensions_to_plot[0],dimensions_to_
—plot[1]11,

couplings|['lineageOT'],

c=[0.2, 0.8, 0.5],

alpha_scale = 0.1)
plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[1l] + 1))
plt.title('LineageOT coupling')

for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays|['late']], ['Early cells',
—'Late cells'], colors):

plt.scatter(al[:, dimensions_to_plot[0]], al:, dimensions_to_plot[l]], alpha = 0.4,
— label label, color = c)
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Optimal transport
sim_eval.plot2D_samples_mat (rna_arrays|['early'][:, [dimensions_to_plot[0],dimensions_
—to_plot[1l]111],
rna_arrays|['late'][:, [dimensions_to_plot[0],dimensions_to_

—plot[1]11,

couplings['OT'],

c=[0.2, 0.8, 0.57,

alpha_scale = 0.1)
plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[1l] + 1))
plt.title('OT coupling')

for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays['late']], ['Early cells',
—'Late cells'], colors):

plt.scatter(al:, dimensions_to_plot[0]], al:, dimensions_to_plot[1l]], alpha = 0.4,
— label = label, color = c)
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Total running time of the script: ( 0 minutes 8.104 seconds)

2.4 LineageOT on a curled trajectory

This shows results of applying LineageOT to a simulation where descendant cells are not all closest to their ancestors,
closely following simulation_demo.ipynb in the source code.

import copy

import matplotlib.pyplot as plt
import numpy as np

import ot

import lineageot.simulation as sim
import lineageot.evaluation as sim_eval
import lineageot.inference as sim_inf
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2.4.1 Generating simulated data

flow_type = 'mismatched_clusters'
np.random.seed (257)

Setting simulation parameters

if flow_type == 'bifurcation':
timescale = 1

else:
timescale = 100

x0_speed = 1/timescale

sim_params

sim.SimulationParameters (division_time_std = 0.0lxtimescale,
flow_type = flow_type,
x0_speed = x0_speed,
mutation_rate = 1/timescale,
mean_division_time = 1.lxtimescale,
timestep = 0.00l+timescale

mean_x0_early = 2
time_early
time_late = time_early + 4xtimescale # Time when late cells are sampled
x0_initial mean_x0_early -time_early+x0_speed

4+xtimescale # Time when early cells are sampled

initial_cell = sim.Cell (np.array([x0_initial, 0, 0]), np.zeros(sim_params.barcode_
—length))
sample_times = {'early' : time_early, 'late' : time_late}

# Choosing which of the three dimensions to show in later plots

if flow_type == 'mismatched_clusters':
dimensions_to_plot = [1,2]

else:
dimensions_to_plot = [0,1]

Running the simulation

sample = sim.sample_descendants (initial_cell.deepcopy (), time_late, sim_params)

2.4.2 Processing simulation output

# Extracting trees and barcode matrices
true_trees {'late':sim_inf.list_tree_to_digraph (sample)}
true_trees['late'].nodes['root']['cell'] = initial_cell

true_trees['early'] = sim_inf.truncate_tree(true_trees['late'], sample_times['early'],
< sim_params)

# Computing the ground-truth coupling

couplings = {'true': sim_inf.get_true_coupling(true_trees|['early'], true_trees|['late
—='1)}
data_arrays = {'late' : sim_inf.extract_data_arrays (true_trees['late'])}

(continues on next page)
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(continued from previous page)

rna_arrays = {'late': data_arrays(['late'][0]}

barcode_arrays = {'late': data_arrays|['late'][1]}

rna_arrays['early'] = sim_inf.extract_data_arrays(true_trees['early']) [0]
num_cells = {'early': rna_arrays|['early'].shape[0], 'late': rna_arrays|['late'].
—shape[0]}

print ("Times : ", sample_times)

print ("Number of cells: ", num_cells)

# Creating a copy of the true tree for use in LineageOT

true_trees['late, annotated'] = copy.deepcopy(true_trees['late'])
sim_inf.add_node_times_from_division_times (true_trees['late, annotated'])
sim_inf.add_nodes_at_time (true_trees|['late, annotated'], sample_times['early']);

# Scatter plot of cell states

cmap = "coolwarm"
colors = [plt.get_cmap (cmap) (0), plt.get_cmap (cmap) (256) ]
for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays['late']], ['Early cells’',

—'Late cells'], colors):
plt.scatter(al:, dimensions_to_plot[0]], al:, dimensions_to_plot[l]], alpha = 0.4,
— label = label, color = c)

plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[1l] + 1))
plt.legend();
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Out:
Times : {'early': 400, 'late': 800}

Number of cells: {'early': 8, 'late': 128}

<matplotlib.legend.Legend object at 0x7£1289c0d050>

Since these are simulations, we can compute and plot inferred ancestor locations based on the true tree.

# Infer ancestor locations for the late cells based on the true lineage tree
observed_nodes = [n for n in sim_inf.get_leaves (true_trees['late, annotated'],
—include_root=False) ]

sim_inf.add_conditional_means_and_variances (true_trees|['late, annotated'], observed_
—nodes)

ancestor_info = {'true tree':sim_inf.get_ancestor_data(true_trees['late, annotated'],
—sample_times['early'])}

# Scatter plot of cell states, with inferred ancestor locations for the late cells

for a,label, ¢ in zip([rna_arrays['early'], rna_arrays['late']], ['Early cells',
—'Late cells'], colors):

plt.scatter(al:, dimensions_to_plot[0]], al:, dimensions_to_plot[1l]], alpha = 0.4,
— label = label, color = c)
plt.scatter (ancestor_info['true tree'][0][:,dimensions_to_plot([0]],

(continues on next page)
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(continued from previous page)

ancestor_info['true tree'][0][:,dimensions_to_plot[1l]],
alpha = 0.1,
label = '"Inferred ancestors',

color = 'green')
plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[l] + 1))
plt.legend();
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Out:

<matplotlib.legend.Legend object at 0x7£12817b86d0>

To better visualize cases where there were two clusters at the early time point, we can color the late cells (and their
inferred ancestors) by their cluster of origin Cells in orange are from the late time point with ancestors on the left;
cells in green are from the late time point with ancestors on the right. The estimated ancestor distributions in red and
purple are closer to the true ancestors than the observations in orange and green.

is_from left = sim_inf.extract_ancestor_data_arrays(true_trees|['late'], sample_times]|
—'early'], sim_params) [0][:,1] < O
for a,label in zip([rna_arrays|['early'], rna_arrays|['late'][is_from_ left,:], rna_

—arrays|['late'] [~is_from_left,:]], ['Early cells', 'Late cells from left', 'Late,
—cells from right']):

plt.scatter(al:, 11, al:, 2], alpha = 0.4)

(continues on next page)

36 Chapter 2. LineageOT examples




LineageOT, Release 0.2.0

(continued from previous page)

plt.xlabel ('Gene 2')
plt.ylabel ('"Gene 3'")

for a, label in zip([lancestor_info['true tree'][0][is_from_left,

—'true tree'][0] [~is_from_left, :11],

['Left ancestors',
plt.scatter(al:,11, al:,21, = =

P

'Right ancestors']):

ancestor_info[

alpha 0.4, label label)
plt.legend()
Left ancestors 1 L
3 Right ancestors .
& &
2 .
l .
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Out:

<matplotlib.legend.Legend object at 0x7£1289b33150>

2.4.3 Running LineageOT

The first step is to fit a lineage tree to observed barcodes

# True distances
true_distances =

= {key:sim_inf.compute_tree_distances (true_treeslkey])
—trees}

# Estimate mutation rate from fraction of unmutated barcodes

for key in true_

(continues on next page)
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rate_estimate = sim_inf.rate_estimator (barcode_arrays|['late'], sample_times['late'])

# Compute Hamming distance matrices for neighbor joining
hamming_distances_with_roots = {'late':sim_inf.barcode_distances (np.
—concatenate ([barcode_arrays|['late'],

np.
—~zeros ([1l,sim_params.barcode_length])]))}

# Compute neighbor-joining tree

fitted_tree = sim_inf.neighbor_join (hamming_distances_with_roots['late'])
Once the tree is computed, we need to annotate it with node times and states

# Annotate fitted tree with internal node times

sim_inf.add_leaf_barcodes (fitted_tree, barcode_arrays|['late'])

sim_inf.add_leaf x(fitted_tree, rna_arrays|'late'])

sim_inf.add_leaf_times (fitted_tree, sample_times['late'])
sim_inf.annotate_tree(fitted_tree,

rate_estimatexnp.ones (sim_params.barcode_length),
time_inference_method = 'least_squares');
# Add inferred ancestor nodes and states
sim_inf.add_node_times_from_division_times (fitted_tree)
sim_inf.add_nodes_at_time(fitted_tree, sample_times|['early'])
observed_nodes = [n for n in sim_inf.get_leaves(fitted_tree, include_root = False) ]
sim_inf.add_conditional_means_and_variances (fitted_tree, observed_nodes)
ancestor_info['fitted tree'] = sim_inf.get_ancestor_data(fitted_tree, sample_times]|
—~'early'])
Out:
pcost dcost gap pres dres

0: -4.0661e+07 -4.2066e+07 6e+06 1e-01 2e-01

1: -4.0696e+07 -4.1441e+07 8e+05 8e-03 2e-02

2: —4.0803e+07 -4.1023e+07 2e+05 2e-03 4e-03

3: -4.0851e+07 -4.0887e+07 4e+04 1le-16 1le-16

4: -4.0862e+07 —-4.0866e+07 4e+03 1le-16 2e-16

5: -4.0863e+07 -4.0864e+07 3e+02 1le-16 2e-16

6: —-4.0863e+07 -4.0863e+07 1le+01 1le-16 4de-16
Optimal solution found.
We’re now ready to compute LineageOT cost matrices

# Compute cost matrices for each method
coupling_costs = {}
coupling_costs['lineageOT, true tree'] = ot.utils.dist(rna_arrays|['early'], ancestor_
—info['true tree'][0])@np.diag(ancestor_info['true tree'][1]**(-1))
coupling_costs['OT'] = ot.utils.dist (rna_arrays|['early'], rna_arrays['late'l])
coupling_costs['lineageOT, fitted tree'] = ot.utils.dist (rna_arrays|['early'], .
—ancestor_info['fitted tree'][0])@np.diag(ancestor_info['fitted tree'][1l]**(-1))
early_time_rna_cost = ot.utils.dist(rna_arrays['early'], sim_inf.extract_ancestor_
—data_arrays (true_trees['late'], sample_times['early'], sim_params) [0])
late_time_rna_cost = ot.utils.dist (rna_arrays|['late'], rna_arrays|['late'])

Given the cost matrices, we can fit couplings with a range of entropy parameters.
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epsilons = np.logspace (-2, 3, 15)

couplings['OT'] = ot.emd([],[],coupling_costs['OT"'])
couplings|['lineageOT'] = ot.emd([], [], coupling_costs['lineageOT, true tree'])
couplings|['lineageOT, fitted'] = ot.emd([], [], coupling_costs['lineageOT, fitted tree

="'1)
for e in epsilons:
if e >=0.1:
f = ot.sinkhorn
else:
# Epsilon scaling is more robust at smaller epsilon, but slower than simple_,
—sinkhorn

f = ot.bregman.sinkhorn_epsilon_scaling
couplings|['entropic rna ' + str(e)] = £([],[],coupling_costs['OT'], e)
couplings|['lineage entropic rna ' + str(e)] = £([], [], coupling_costs['lineageOT,
— true tree'], exnp.mean (ancestor_info['true tree'][1]*%(-1)))
couplings(['fitted lineage rna ' + str(e)] = £([], [], coupling_costs['lineageOT,

—~fitted tree'], exnp.mean(ancestor_info['fitted tree'][1]**x(-1)))

Out:

/home/docs/checkouts/readthedocs.org/user_builds/lineageot/envs/stable/lib/python3.7/
—site-packages/ot/bregman.py:1112: UserWarning: Sinkhorn did not converge. You might
—want to increase the number of iterations “numItermax’ or the regularization_
—parameter ‘reg .

warnings.warn ("Sinkhorn did not converge. You might want to "
/home/docs/checkouts/readthedocs.org/user_builds/lineageot/envs/stable/lib/python3.7/
—site-packages/ot/bregman.py:517: UserWarning: Sinkhorn did not converge. You might,,
—want to increase the number of iterations “numItermax’ or the regularization
—parameter ‘reg .

warnings.warn ("Sinkhorn did not converge. You might want to "

2.4.4 Evaluation of couplings

First compute the independent coupling as a reference

couplings|['independent'] = np.ones (couplings['OT'].shape)/couplings['OT'].size
ind_ancestor_error = sim_inf.OT_cost (couplings|['independent'], early_time_rna_cost)
ind_descendant_error = sim_inf.OT_cost (sim_eval.expand_coupling (couplings|['independent
‘—“JI
couplings|['true'],
late_time_rna_cost),
late_time_rna_cost)

Plotting the accuracy of ancestor prediction

ancestor_errors = sim_eval.plot_metrics (couplings,

lambda x:sim_inf.OT_cost(x, early_time_rna_
—cost),

'Normalized ancestor error',

epsilons,

scale = ind_ancestor_error,

points=False)
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Plotting the accuracy of descendant prediction

descendant_errors = sim_eval.plot_metrics (couplings,
lambda x:sim_inf.OT_cost (sim_eval.expand_
—coupling(x,

AN couplings|['true'],
N late_time_rna_cost),

late_time_rna_
—cost),

'Normalized descendant error',
epsilons, scale = ind_descendant_error)
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2.4.5 Coupling visualizations

Visualizing the ground-truth coupling, zero-entropy LineageOT coupling, and zero-entropy optimal transport coupling.

Ground truth:

sim_eval.plot2D_samples_mat (rna_arrays|['early'][:, [dimensions_to_plot[0],dimensions_
—to_plot[1]]],

rna_arrays|['late'][:, [dimensions_to_plot[0],dimensions_to_
—plot[1l]]],

couplings|['true'],

c=[0.2, 0.8, 0.5],

alpha_scale = 0.1)

plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[l] + 1))
plt.title('True coupling')

for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays|['late']], ['Early cells',
—'Late cells'], colors):

plt.scatter(al[:, dimensions_to_plot[0]], al:, dimensions_to_plot[l]], alpha = 0.4,
— label = label, color = c)
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LineageOT:
sim_eval.plot2D_samples_mat (rna_arrays|['early'][:, [dimensions_to_plot[0],dimensions_
—to_plot[1l]111],
rna_arrays|['late'][:, [dimensions_to_plot[0],dimensions_to_
—plot[1l]]],
couplings|['lineageOT'],
c=[0.2, 0.8, 0.5],
alpha_scale = 0.1)
plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[1l] + 1))
plt.title('LineageOT coupling')
for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays|['late']], ['Early cells',

—'Late cells'], colors):

plt.scatter(al:, dimensions_to_plot[0]], al:, dimensions_to_plot[l]], alpha
— label = label, color = c)

0.4,
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sim_eval.plot2D_samples_mat (rna_arrays|['early'][:,
—to_plot[1l]111],
rna_arrays|['late'][:

I
—plot[1]11,
couplings['OT'],
c=[0.2, 0.8, 0.57,
alpha_scale 0.1)

[dimensions_to_plot[0],dimensions_to_

[dimensions_to_plot[0],dimensions_

plt.xlabel ('Gene ' + str(dimensions_to_plot[0] + 1))
plt.ylabel ('Gene ' + str(dimensions_to_plot[1l] + 1))
plt.title('OT coupling')
for a,label, ¢ in zip([rna_arrays|['early'], rna_arrays['late']], ['Early cells',
—'Late cells'], colors):
plt.scatter(al:, dimensions_to_plot[0]], al:, dimensions_to_plot[1l]], alpha = 0.4,
— label label, color = c)
2.4. LineageOT on a curled trajectory 43



LineageOT, Release 0.2.0

OT coupling
- § s
2 -
l -
M
¢ of f .
[iF]
o
_1 -
_2 -
ok ; t
T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Gene 2

Total running time of the script: ( 0 minutes 11.708 seconds)
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CHAPTER
THREE

CORE PIPELINE

lineageot.core.fit_lineage_coupling (adata, time_I, time_2, lineage_tree_t2, time_key="time’,

state_key=None, epsilon=0.05, normalize_cost=True,
ot_method="sinkhorn', marginal_I=[], marginal_2=[],
balance_reg=inf’)

Fits a LineageOT coupling between the cells in adata at time_1 and time_2. In the process, annotates the lineage
tree with observed and estimated cell states.

Parameters

adata (AnnData) — Annotated data matrix

time_1 (Number) — The earlier time point in adata. All times are relative to the root of
the tree.

time_2 (Number) — The later time point in adata. All times are relative to the root of the
tree.

lineage_tree_t2 (Networkx DiGraph) - The lineage tree fitted to cells at time_2.
Nodes should already be annotated with times. Annotations related to cell state will be
added.

time_key (str (default 'time')) — Key in adata.obs and lineage_tree_t2 con-
taining cells’ time labels

state_key (str (default None)) — Key in adata.obsm containing cell states. If
None, uses adata.X.

epsilon (float (default 0.05))— Entropic regularization parameter for optimal
transport

normalize_cost (bool (default True))-— Whether to rescale the cost matrix by
its median before fitting a coupling. Normalizing this way allows us to choose a reasonable
default epsilon for data of any scale

ot_method (str (default 'sinkhorn')) — Method used for the optimal
transport solver.  Choose from ‘sinkhorn’, ‘greenkhorn’, ‘sinkhorn_stabilized’ and
‘sinkhorn_epsilon_scaling’ for balanced transport and ‘sinkhorn’, ‘sinkhorn_stabilized’,
and ‘sinkhorn_reg_scaling’ for unbalanced transport. ‘sinkhorn’ is recommended unless
you encounter numerical problems. See PythonOT docs for more details.

marginal_1(Vector (default []))-—Marginaldistribution (relative growth rates)
for cells at time 1. If empty, assumed uniform.

marginal_2 (Vector (default []))-—Marginaldistribution (relative growth rates)
for cells at time 2. If empty, assumed uniform.
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* balance_reg (Number) — Regularization parameter for unbalanced transport. Smaller
values allow more flexibility in growth rates. If infinite, marginals are treated as hard con-
straints.

Returns coupling — AnnData containing the lineage coupling. Cells from time_1 are in cou-
pling.obs, cells from time_2 are in coupling.var, and the coupling matrix is coupling.X

Return type AnnData

lineageot.core.fit_tree (adata, time, barcodes_key="barcodes'’, clones_key="X_clone’,
clone_times=None, method="neighbor join')
Fits a lineage tree to lineage barcodes of all cells in adata. To compute the lineage tree for a specific time point,
filter adata before calling fit_tree. The fitted tree is annotated with node times but not states.

Parameters
* adata (AnnData) — Annotated data matrix with lineage-traced cells

* time (Number) — Time of sampling of the cells of adata relative to most recent common
ancestor (for dynamic lineage tracing) or labeling time (for static lineage tracing).

* barcodes_key (str, default 'barcodes') — Key in adata.obsm containing
cell barcodes. Ignored if using clonal data. If using barcode data, each row of
adata.obsm[barcodes_key] should be a barcode where each entry corresponds to a possibly-
mutated site. A positive number indicates an observed mutation, zero indicates no mutation,
and -1 indicates the site was not observed.

* clones_key (str, default 'X_clone') - Key in adata.obsm containing clonal
data. Ignored if using barcodes directly. If using clonal data, adata.obsm[clones_key] should
be a num_cells x num_clones boolean matrix. Each entry is 1 if the corresponding cell
belongs to the corresponding clone and zero otherwise.

* clone_times (Vector of length num_clones, default None) — Ignored
unless method is ‘clones’. Each entry contains the time of labeling of the corresponding
column of adata.obsm[clones_key].

* method (str) - Inference method used to fit tree. Current options are ‘neighbor join’ (for
barcodes from dynamic lineage tracing), ‘non-nested clones’ (for non-nested clones from
static lineage tracing), or ‘clones’ (for possibly-nested clones from static lineage tracing).

Returns tree — A fitted lineage tree. Each node is annotated with ‘time_to_parent’ and ‘time’ (which
indicates either the time of sampling (for observed cells) or the time of division (for unobserved
ancestors)). Edges are directed from parent to child and are annotated with ‘time’ equal to the
child node’s ‘time_to_parent’. Observed node indices correspond to their row in adata.

Return type Networkx DiGraph

lineageot.core.read_newick (filename, leaf labels, leaf time=None)
Loads a tree saved in Newick format and adds annotations required for LineageOT.

Parameters
e filename (str)— The name of the file to load from.

* leaf labels (1ist)-— The label of each leaf in the Newick tree, sorted to align with the
gene expression AnnData object filtered to cells at the corresponding time.

* leaf time (float (default None)) — The time of sampling of the leaves. If un-
specified, the root of the tree is assigned time 0.

Returns tree — The saved tree, in LineageOT’s format. Each node is annotated with
‘time_to_parent’” and ‘time’ (which indicates either the time of sampling (for observed cells)
or the time of division (for unobserved ancestors)). Edges are directed from parent to child and
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are annotated with ‘time’ equal to the child node’s ‘time_to_parent’. Observed node indices
correspond to their index in leaf_labels, which should match their row in the gene expression
AnnData object filtered to cells at the corresponding time.

Return type Networkx DiGraph

lineageot.core.save_coupling_as_tmap (coupling, time_l, time_2, tmap_out)
Saves a LineageOT coupling for downstream analysis with Waddington-OT. A sequence of saved couplings can
be loaded in wot with wot .tmap.TransportMapModel. from_directory (tmap_out)

Parameters
* coupling (AnnData) — The coupling to save.

* time_1 (Number) — The earlier time point in adata. All times are relative to the root of
the tree.

* time_2 (Number) — The later time point in adata. All times are relative to the root of the
tree.

* tmap_out (str)— The path and prefix to the save file name.
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